The kink phenomenon in Fejér and Clenshaw-Curtis quadrature

نویسندگان

  • J. A. C. Weideman
  • Lloyd N. Trefethen
چکیده

The Fejér and Clenshaw–Curtis rules for numerical integration exhibit a curious phenomenon when applied to certain analytic functions. When N (the number of points in the integration rule) increases, the error does not decay to zero evenly but does so in two distinct stages. For N less than a critical value, the error behaves like O( −2N ), where is a constant greater than 1. For these values of N the accuracy of both the Fejér and Clenshaw–Curtis rules is almost indistinguishable from that of the more celebrated Gauss–Legendre quadrature rule. For larger N , however, the error decreases at the rate O( −N ), i.e., only half as fast as before. Convergence curves typically display a kink where the convergence rate cuts in half. In this paper we derive explicit as well as asymptotic error formulas that provide a complete description of this phenomenon. Mathematics Subject Classification (2000) 65D32 · 41A55

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast construction of Fejér and Clenshaw-Curtis rules for general weight functions

The main purpose of this paper is to compute the weights of Clenshaw-Curtis and Fejér type quadrature rules via DCT and DST, for general weight functions w. The approach is different from that used by Waldvogel in [25], where the author considered the computation of these sets only for the Legendre weight w ≡ 1 using DFT arguments.

متن کامل

Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series and Hardy spaces

In the present paper we prove that for any 0 < p ≤ 2/3 there exists a martingale f in Hp such that the Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series of the martingale f is not uniformly bounded in the space Lp .

متن کامل

Is Gauss Quadrature Better than Clenshaw-Curtis?

We compare the convergence behavior of Gauss quadrature with that of its younger brother, Clenshaw–Curtis. Seven-line MATLAB codes are presented that implement both methods, and experiments show that the supposed factor-of-2 advantage of Gauss quadrature is rarely realized. Theorems are given to explain this effect. First, following O’Hara and Smith in the 1960s, the phenomenon is explained as ...

متن کامل

Nyström-Clenshaw-Curtis quadrature for integral equations with discontinuous kernels

A new highly accurate numerical approximation scheme based on a Gauss type Clenshaw-Curtis quadrature for Fredholm integral equations of the second kind

متن کامل

On the Convergence Rates of Gauss and Clenshaw-Curtis Quadrature for Functions of Limited Regularity

We study the optimal general rate of convergence of the n-point quadrature rules of Gauss and Clenshaw–Curtis when applied to functions of limited regularity: if the Chebyshev coefficients decay at a rate O(n−s−1) for some s > 0, Clenshaw–Curtis and Gauss quadrature inherit exactly this rate. The proof (for Gauss, if 0 < s < 2, there is numerical evidence only) is based on work of Curtis, Johns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2007